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FOREWORD

This report was prepared by Fabric Research Laboratories, Inc.,
under USAP Contract AF 33(616)-387. The contract was initiated under
Project No., 7320, "Air Force Textile Materials", Task No. 73201,
'Textile Materials for Parachutes", formerly RDO No. 612-12, "Tex-
tiles for High Speed Parachutes', and was administered under the di.-
rection of Materiale Laboratory, Directorate of Research, Wright Air
Development Center, with Mr, W. 0. Perry acting as project engineer.

The authors gratefully acknowledge the following individuals
for their many contributions to the work covered in this report:
Dr, Walter J. Hamburger for his guidance both in the initial phases
and at various stages in the progress of the research; Mr. Eric
Singer who contributed to the early research effort; Mr. Newton
Teixeira for his suggostions on light penetrability measurements;
and Mra Yvonne Arbuckie for her painstaking efforts in the labora-
tory., Finally, a special acknowledgment is due to Mr. William G.
Klein for his efforts in biaxial testing and in the writing of that

section of this report.

On several occasions, this report identifies data by Specification
Mi1-7020. This is in error and should read Mil-C-7020.

This report covers work conducted from January 1952 to Januery 1955.
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ABSTRACT

This is the final report on the "Study of the Effect of Twist in s
Yerns on Parachute Fabrics™, Analytical developments on the mechanies of |
air flov through textile structures were made by adopting classical flow |
equations with due consideration to the visco-elastic behavior of textile
materials, Experimental results on a large mmber of fabric samples (MIL-

C~7020, Types I and II) with yarn twists varylng from 0.5 to 35 turns per
inch are given to demonstrate the various changes in the performance charac- |

teristies affectad Ly changes in yarn geometry.

From the work accomplished, it 1s concluded that:

WADC TR 55-104

1.

2.

3.

The flow of air through the open areas of a fabric obeys
the general rules of fluid mechanics namely: flow at any
given pressure diffsrential varies with the amount of open
area; and the rate of flow at varylng pressure differentials
follows the square root of the pressure differential with
sultable modifying constants to allow for those changes in
the open area which occur when the fabric is subjected to
biaxial extensions exerted by the air pressure.

The free area available for air flow varies as a function
of fabric and yarn geometry. The ellipticity of the yarn
cross section 1s functional with the yarn twist; flatter
the yarn, the less is the open space between adjacent yarms.
Hence, for a given texture (threads per inch) the free area
varies inversely with the yarn width,.

The open areas changs when the fabric under test is subjected
to Increased pressure differentials. The yarn systems in the
fabric structure,when so stressed,result in biaxial exten-
sions which widen the spaces between yarns. The rate at
vhich the open areas vary with pressure differential may be
determined by studying the febrics' blaxial stress-strain
behavior. At the present writing only limited studies have
been made.

The magnitude of open areas in eny given fabric may be calcu-
lated from the yarn widths determined microscopically and the
fabric texture. However, a more precise method has been
developed by measuring light penetrability through the use

of a Beckman Spectrophotometer,

In general, the following trends have been shown to be
evident: with the increase of yarn twist

Fabric thickness increased

Denier of yarn removed from fabric increased

Horizontal yarn diameter decreased

Vertical yarr diameter increased

Free area: area between yarns increased

Light penetrability increased
iii




Air permeability
Freedom of yarn slippage
Yarn tensile strength
Yarn elongation

Energy to rupture yarn
Strip tensile strength
Fabric elongation
Secondary creep

Tear strength

Tear energy

PUBLICATION REVIEW
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Area of the orifice.

Calendered finish,

Yarn diameter (horizontal umless otherwise specified), inches.
Yarn denier.

Energy required to rupture a yarn, in-1b/in/denier.

Pabric extension due to biaxial loading.

Effectlve yarn diameter of rip-stop fabrics.

Projeoted free area: fraction of total fabric surface which
the open pores occupy, dimensionless.

Acceleration due to gravity, 32.18 ft/sec/sec.
Grams per denier.

Pressure differential, ft. of air.

Discharge coefficient or any constant.

Light penetrability, dimensionless.
Non-calendered finish

Number of orifices

Exponential constant,

Load, pressure, or tear strength.

Average tear strength, lbs.

Maximum tear load, 1bs.

Pressure differential, inches of water.
Air permeability, £t3/min/ft?
Air permesbility, £t /sec/ %

Rip-stop weave.
Yarns per inch of fabric (texture)

xxx




t = Yarn twist, turns per inch.
(TE) = Tear energy, inch pounds per inch of fabric.

v Velocity of flow, ft/sec.

= (Constants.
= (Constants.

= (Constants,

= Microns.

("]
I

& = Elongation.
S = Poisson's Ratlo.
¢

= Density of air, lbs/ft’

Subseripts
o = Initial oondition, at rest.
1, 2 = Other conditions.
w = Warp direction.
f = Filling direction.

WADC TR 55-104 xxxd




I, INTRODUCTION

I-1 In order for a parachute to function properly its canopy
requires certain eir permeability characteristics. In most textile labora-
tories air permeability is still commorly messured at a pressure differentisl
scross the fabric equal to one-half incn of water, Under actual flight con-
ditions air flow and uccompanying pressure differentials may be enormously
higher. In this reseurch program, measurements of air flow were made with
pressure differentials of up to Uifty inches of wuter.

Generally speaking, empiricism has been employed in determining
the air permesbility characteristics of fabrics. This technique has pre-
cluded investigators from designing textile fabrics ~ith requisite air [low
propertics at requisite pressure drops as mey be demunded by the Air Fouce.
One of the objectives of this research, therefore, was a rational engincer-
ing study of those fiber, yarn, and fabric factors which influence febrlic
alr permeability.

It should be recognized thet any attempt to quantitice the mechan-
ism of eir flow through a textile structure is an extremely complicated
activity. This is due, in purt, to the fact that textile fabrics are visco-
elastic. Their properties arc not constant but very with the force which
may result ‘from the application of a pressure differential. Yarn and fubric
geometry principles developed at Fabric Research Laboratories, Inc. and
elsewherc have becn most helpful in the understanding and development of
the mechanisms of air flow through parachute fabrics.

I-2 This report is divided into three sections. TFirst, a dis-
cussion of the effect of varying yarn twist on the geometrical and mechanical
properties of parachute fabrics. Second, a study of the mechanics of air flow
through fabsic structures whercin preliminary developments in the analytical
phases of the research are presented. Third, a compilution of all accumulated
data and findings together with test procedures, techniques, graphical cepre-
sentations and photomicrographs.

I-3 The fabric samples used throughout this project come from tio
sources. At the onset of the p.ogram, twenty eight twill (MIL-C-7020, Type II)
and six rip-stop (MII-C-7020, Type I) tabrics were woven and made available
by Cheney Brothers, Manchester, Connccticut. Half the number of fabrics within
each type vere calendered while thc other half were not. These febrics proved
to be of extreme valuc; wuch of the preliminary information on the effects
of yarn twist on parachute fabric performance was obtained on thom. However,
certain shortcomings existed in the series. First, the range of yarn twists,
while quite adequate in the {'illing direction of the Type I1 fabrics wus
grossly insufficient in the varp direction of both Type I and Type II fabrics.
Second, the total amount of each fabric made available to Fabric Research
Lab ‘ories, Inc. was upproximately two yards. 1In vies of the numerous erperi-
ments decessary for e rational research program as well as those tests called
for in Exhibit A of the contract, it was obvious that the samples avuilable

were entirely insufficient.
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Particularly lecking were fabrics of Type I construction. It
ves decided, thereforce, to design an additional scrics o footy essentially
diff'erent fabrics of basic Specification MIL-C-7020; i.c., ol rip-step
construction, having four different warp and five rilling twists., These
fabrics vere woven by W.ruick Mills. Agnin, as in the Cheney scries, the
rabrics were {inished both celendered and uncalcende.ed.

T-4 . With the thirty-four Chneney rabrics end the feoly war.ick
fabrics, it was both impossible (Jack of sufficient meterials in the Cherey
series) as well es impractical (time ond money involved) to subject ull
scventy-four fabrics to the same number o tests. Hence a judicious
selection of samples vas made for cach experiment conducted to minimice
the number of tests and yect produce the mximum amount of inlcrmtion.

1-5 Despite the voluminous date .ollected end conclusions crrived
at, the work reported herein still indicates that this is only the initial
step in the understanding of the mechanics of air flew through [abric struc-
tures, and the epplication of cngineering methoas Lo the design of parcchute
fabrics.
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II. EFFECTS OF YARN TWIST ON FABRIC PROPERTIES

according to the busic concepts ol rab. ic geometry, as pioncored
by F. T. Peirce*, in the plain veave zlone, ideclly, there muy be os meny
as eleven constructional variables. Varistions in eny one or more ol these
will affect the geometry and the mechanical behavior of the ibric. Footu-
nately, the fabrics studied in this progeam have been contfined to the tuo
types of Specification MIL-C-7020, <herein within c.ch type 11 viriubles
were nominally held constunt «ith the cxception o ya.on twist,

The principal, or the primury effect of varying the yoro tuist
is the elteration of tne yarn cross scvction. In the rarge of yarn tuists
investigated (from O.: to s, turns per inch), the cross scoticnul shapes
undergo e considerable amount of change. From a nearly flot ribbor at o,
twist the section becomes sn ellipse, and finally circuie. zt high teist.
The secondary effects of yarr twist variation are monifold, and all arc
conscquences of the change in cross sectional shapc.

IT-1 Effects of Yarn Tuist on the Geomctrical Propesties of Yarn
and Fabric.

1.1 The changes in the cross sectional shape of the yorn with increus-
ing twist are best shoun in the photomicrographs given in Appendix V. It
1s seen that between 0.9 and 5.0 turns per inch, the chunge in the cross
sectional shape is small since the yarn is very much flattened by Lhe luck
of twist. The big change occurs betveen tvist of 5.0 and 20 turns per inch,
where the transition from a flat ribbon to an ellipse tekes place. Beyond
this point, where the yarn is already nearly circular, further cddition of
twist may only serve to make the yarn diameter somevhat smzller by tighten-
ing the structure. The extent of yarn flettening may be characterized by
such terms as the circularity coefficient o: the flattenirg cocfficient,
usually defined b;" -he ratio of the vertical and the horizontel yarn diamcters.

Tables 16 through 1¢ give yarn diameters zs measured by the micro-
scope. Plots of yarn twist versus ya.n diameter are shown in Figures 2 - 4.
In the case of rip-stop fabrics, effective yern diameters vere calculated
since four out of every eighteen yarns arc voven as tvo rip-stop yarns.
Thus:

- IR 2 s
Eff. Diam. = 1—8 Didm‘single yarn + 18 Dmm’vip-stop yarn _-_-(2.1)

1.2 In studies of air permeability performance of paruchute fabrics,
one is primarily concerned with the hori:zontal diameter vhich,together with
the number of yarns per inch of fabric,determine the amount of open arca
available for air flow. The open area, other.ise called the projected fric
area, is defined as the fraction of the total fabric surfacc not cccupied by
yarns, hence open to flow of air:

¥ F. T. Peirce - "The Geometry of Cloth Structure", Journal of the Textile
Institute, March 1937.
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FA = (1 - DyTw) (1 - DfTyp) (2.2)
(A1l terms are defined in the "Nomenclature,")

Free areas of the various fabric samples are given in Tab’.es 20
through 22, Results show, as expected, that free area increases with increase

in yarn twist.

II-2 Effects of Yarn Twigt on the Mechanical Propertieg of the Fabric

I1-2,1 Effects of Yarn Twist on Air Permcability

The flow of air through any given fabric generally takes place
between adjacent yarns and, to a lesser degree, between fibers within a yarn,
The effects of yarn twist on air permeability are twofold. As yarn twist
increases, from (say) a zero twist yarn, both the circularity and the packing
density of the yarn are increased, As the yarns become more circular, the
pore space between yarns is enlarged; hence an increase in air flow results,
The addition of twist bunches the fibers closer together, which restricta the
flow of eir between the fibers, However, as has already been stated, this
latter effect is small, The gross effect is that as the yarn twist increases,
80 does the permeability., This is evident in Figures 10 to 27. These figures
show curves of permeability versus pressure differential., The curves of
fabrics woven from yarns of higher twist exhibit a higher rete of air flow.

Figures 5 to 9 plot air permeability’versus yam twist at given
levels of pressure differential. It is seen that as yarn twist increases, the
air flow increases with it, However, beyond twenty turns per inch, where the
yarn is already circular in cross section, further addition of twist may only
serve to make the yarn diameter somewhat asmaller by increasing the packing
factor, Hence the air permeability still increases with increasing yarn twist
but at a slower rate, These observations may be readily confirmed by examin-

ing the photomicrographs,

Data for Figures 5 to 27 are tabulated in Tables 23 to 25. The
Frazier Permeometer, at Fabric Research Laboratories,supplied deta on the
low pressure permeability tests (up to 10 inchee of water for certain fabrics.)
The high pressure tests were conducted at the Georgia Institute of Technology
Experimental Station under the supervision of a representative from Fabric
Research Laboratories, The equipment at Georgia Institute of Technology has

& capacity of up to 50 inches of water.

Helf of the febrics under study were calendered. Calendering causes
yarn flattening. Flattened yarns exhibit decreased vertical diameters and
increased horizontal diemeters. This tends to diminish the free space between

yarns which naturally will reduce air flow, Qc/Q, is a ratio of air permeabilities
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of calendered over uncelendered fabrics, The effect of calendering is depicted
by the magnitude of this ratio, Figure 197 plots this effect with varying
yarn twist, Twists of 15 turns per inch or under are most affected by calen-
dering, Figure 198 plots the effect of calendering at various pressure
differentials which shows that the ratio of Q./Q, becomes a constent at pres-
sure differentials of 20 inches of water or more,

In general, the control of air permeability, by varying the yarn
twist i3 a more desirable method than calendering, As mentioned above, the
effect of calendering is not a constant until the pressure differential
exceeds 20 inches of water, This adds to the difficulties of properly
engineering parachute fabrics as will be further discussed in Section III,

11-2,2 JYgrn Stability Tegts

As required by Exhibit A of the research contract, yarn stability
tests were performed on the Cheney fabrics, In these tests, a row of pins
arranged in the shape of a comb was used to measure the amount of fabric digs-
tortion under a given applied load.

Samples two inches wide by five inches long were used, The longer
dimension of the sample was in the filling direction in order that the dis-
placement of the warp yarns sliding over the filling yarms might be measured.
Tests in the other direction; i.e,, filling yarns being displaced over warp
yarng, were omitted since there was insufficient material for the performance
of tests in both directions, It was believed that filling twist variation which
existed over a broader range than did warp twist variations would influence
warp yarn mobility more than filling yarn mobility, A metal bar two inches
long with a row of 23 pins (approximately 0.04 inches in diameter) equally
spaced was attached to one of the jaws of the Instron Tensile Tester. The
row of pins was made to pierce through the febric ssmple at a distance of
about one inch from the end., The other end of the sample was clamped in the
oppogite jaw such that the gauge length between the row of pins and the other
jaw was exactly three inches (see Figure 28 for test arrangement.) As the
load was applied to the sample (the jaw began to move away from the pins) the
displacement of the yarns caused by the clawing action of the pins was con-
tinuously measured as the load increased, The recorder on the test instrument
registered the total elongation of the sample; i,e., the elongation of the
sample due to the applied load plus the extension provided by the displaced
yarns, Hence in order to measure the actual yarn displacement under the
particular applied load, the natural elongation of the fabric must be sub-
tracted from the loed-elongation curve provided by the recorder., Figure 29
shows a typical illustration: Curve A is the total extension curve, obtained
directly from the recorder, Curve B is the average sirip tensile load-
elongation curve of the fabric sample (3 inch gage length.) Curve C was
plotted by taking the difference between Curves A and B,

In all these tests, the displacement measurements were taken at a
load of 1,5 pounds, for the two-inch wide sample, For most of the febrics
tested, the displacement curve became almost asymptotic to the load axis; any
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further increase in lecad did not cause much additional yarn displacement.
This occurs when the slopes of curves A and B in Figure 29 becmme parellel.
The results of these tests are tabulated in Table 26 and are plotted in
Flgure 30, The data scem to show an upward trend with increase in yarn
tuist (see dotted “average” line in Figure 30), which might be explained with
the aid of the photomicrographs of the cross sections. Assuming that the
coefficient of friction remins unchanged with increase in twist, as the
sarns become more circular in cross section, the less the areas of contact
between the werp and filling yarns become, hence the increase in mobility.
Lo careful lengthy analysis has been made of the cause of the observed
results, since this work was not intended to constitute a major portion of

the research.

1I-2.3 Tensile Properties of Yarns Removed from Fabrics

e

Tensile tests of yarns removed from the Cheney fabrics have been
conducted to cvaluate the effect of yarn twist. Tables 27 and 28 list the
breaking strengths, elongations to rupture, and the energies calculated from
the load-clongation curvesof each fabric. The load-elongation curves are
plotied in Figures 31 to 64. The effects of yarn twist on yarn tensile pro-
perties are very apparent: both the rupture load and rupture elongation are
Increased with increased twist. Consequently, the rupture energy is greatly

increased.

II-2.4 Repeatcd Stress Tests

All parachutes, other than thcse which are designed for one-time
use only, may be subjected to repeated stressing at each use. In the
laboratory, repeated stressing may be accomplished by subjecting a test
specimen to either a selected load or selected elongation, followed by
rcleas: of the load, with subsequent cyclical repetitions of the process.
In parachutes, it is probable that the maximum load rather than extension,
is more or less constant on each occasion that it is used. Thus, it was
decided to conduct tests by imposing a predetermined stress level.

In planning the experiments, in order to cover as wide a range as
possible, three different load levels were selected; namely, 25%, 50% and
5% of the fabrics' ultimate breaking strength. The average breaking strength
of the Type I fabrics was about 43 pounds per inch, while the Type II fabrics
broke at approximately 57 pounds per inch. Hence it was convenient to take
load levels of 10, 20 and 30 pounds for Type I fabrics and 15, 30 and 45 pounds

for Type II fabrics.

Samples one inch wide by six inches long were tested in the Instron
Tensile Tester at a 3 inch initial gage length and at a pulling jaw speed of
two inches per minute. Upon reaching the preset maximum lcad level, the
lowver pulling jaw returned at the same rate to the no-load position, and then
the load was reapplied. After the fifth cycle, the test paused for one minute
to enable primary creep recovery to occur, and then the load was reapplied

for a sixth time to rupture the sample.
[ ]
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Figure 79 illustrates diagrammatically the various phases of a
repeated stresc test:

First cycle, loading from O to A, reaching a load level of A.
First cycle, unloading from A to B, from load A to mero laad.
Fifth cycle, loading from C to A, reaching a load level of A.

Point C is determined fcllowing a 1 minute wait after the hth
unloading reaches O load.

Fifth cycle, unloading fror A to b, from locd A to O load,
with O load raintained for 1 minute, the sample length stabi-
lizing at point D' '

Sixth cycle, loading from D' the recovered length at O load |
after 1 minute #ait, to ultimate rupture point E. :

Of particular intcrest with respect to parachute fabrics is the
secondary creep (or permanent sct) after cyclical loading. In Figure 79,
the distance OC is the secondary creep {or the fifth cycle and the distance
OD' the secondary creep fo: thc sixth cycle. Tables 32 and 33 give the
tabulated results as well as other pertinent data, aming which are the cor-
rected residual elongation and the energy to rupture. The corrected residual
elongation is defined as follous:

D'F
~ Original Gage Length + OD'

% C.R.E. X 100 mmemmmeceaoee (28)

and thus represents the elongation to rupture, following the repeated stress-
ing, based on the new gapge length.

The encrgy to rupture is the area under the rupture curve D'EF,
expressed in inch-pounds per inch of the new gage length.

The relationship of the filling secondary creep versus filling yarn
tuist, is plotted in Figure 76. At the 15 pound load level, a definite trend
of increasing secondary creep with increasing filling yarn twist may be seen.
A similar trend exists at the 30 pound level. At U5 pounds, the trend is
less well defined dueto the scattering of individual points. There is also
i trend for the lower warp twist to result in lower permanent set for a given
filling tvist. The dependence of warp permanent set on warp or filling twist
is toc scattered and inconsistent to permit any conclusions at this time.

In terms of practical application, the major effect of secondary
creep or permanent set results in a reduction of the fabric's cover factor;
i.e., the amount of tho open area available for air flov is increased. Other
studies in {hiis reseurch haves shown that the amount of air flow at a given
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Thus, ufter

pressure differential is proportional to the amount of free crea.
repeated use, the air permeability of a parachute may increase because of
secondary creep's "opening up" the fabric and thereby increasing the free area.
However, the data presented in Tables 32 and 33 are not directly applicable

in the prediction of this increase in permeability. The tests performed were
uniaxial while the forces involved in a parachute opening are biaxial. An
intelligent estimate can still be made, pending future biaxial investigations,
if it is assumed that the secondary creep in biaxiel tests is approximately

one half of the uniaxial ones.

The effect of secondary creep on Equation (2.2) deals primarily
with the change in the yarns per inch of fabric. The portion of sccondary
creep resulting from crimp removal will alter yarn spacings without any appre-
ciable effect on yarn diameters. That portion of fabric elongation attributable
to yarn extension; i.e., fabric elongation in excess of the crimp removal point,
miy slightly reduce yarn diameters. This reduction ir diameter can be accom-
plished by either or both of the following:

1. Increase in the circularity of the yarn cross section due to
tension.

2. Slenderizing through lateral contraction consistent with
Poisson's ratio; i.e., the elongation of a cylinder at
constant volume causes lateral contraction.

These effects will be studied in conjunction with the biaxial tests.
For the time being, there does not appear to be a sufficicnt basis for quanti-
tative analyses of lateral yarn dimension changes. Thus, igncring any changes
in yarn diameter, the free area of a fabric sample following secondary creep

removal becomes:

T D
FA' =[1- vy 1 S —fgf— --------------------------- (2.4)
1+ SCf 1+ 5C,
where FA' = The fraction of the fabric area available for air flow

after the sample has been subjected to repeated stressing.

SCy, = Secondary creep in the varp direction.

]

SCp = Secondary creep in the filling direction.

Taking fabrics 10N 1/2 and 10N35 as examples, the changes in the
free areas due to secondary creep at the various load levels were calculated
from Equation (2.4) and are tabulated in Table 34. The predicted values of
air permeability are based on the fact that the flow is proportional to the

free area:
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where Q = Air permeability through a given fabric sample berore
repeated stressing.
Q' = Alr permeability through the same rabric after it has

been subjected te repeated stressing.

Considering the above essumptions, Table 34 shows that at the Uiret
load level (approximately 25% of the breaking strength) the increase {n fre
area, and thereby the ircrease ir air prrmeability, ranges from LA for L
high tvist fabric 10N25, to as much as 10.% for the low twist fabric 17 1
At the 75% repeated stress level the incroases for these same “abrics are
15.6% and 60.2% respectively. heedless to sty, this phernomencn ic of srect
significance in parachute performance. To understand fully the offect of
sccondary creep on air flow, work in future prcjects will be directed tc n
study of bilaxial repeated stress experiments.

o

~

Typical load-elongation curves of these repeated stress tests are
plottec in Figures 77 to 196.

II-2.5 Effect of Yarn Twist on Fabrics' Tear Kesistance

The tongue tear test was uced to evaluate the effoct of yarn tuwist
on the tear resistance of these experimental parachute fabrics. Figure 1709
depicts a warp test sample. The various lines on the diacram are mde vith
a rubber stamp. The specimen is three inches wide and eight inches long. Th=
dotted horizontal lines are spaced one inch apart. A slit ¢C, 2 3/l inches
long, is :-ut along the center of the sample. The ends, A and B are clamped
in the upper and lower jaws of the Instron tester. ic the jaws separate, a
line of tear propagates from C toward D and thencc to E. An autographic
record of the tear force is plotted.

Figure 200 shows ¢ typical tear dlagrom as obtained fromthe recorder
of the Instron. As the path of tear proceeds from the end of the slit, C,
load is built up frcm the cross yarns (perpendicular to line OCDE) thereby
resisting the tearing action. The tear path may progress without rupturing
any yerns because the yarns are being bunched together at the point of tear.
As soon as the load is built up sufficiently high to tear across the bunched
yarns, rupture occurs, and instantly the load drops. With the jaws moving
apart from each other continuously, the cycle is repeated, hence the saw-
tooth shaped curve.

The number of ruptures (or peaks in the diagram) per inch of samplc
torn is usually much less than the number of yarns in that inch of fabric.
The exact number depends upon the ease with which the fabric can be distorted;
i.e., a tight fabric, with the same number of yarns per inch as a loose fabric,
will tear with a higher number of peaks than the looser one, but at a lower
peak load. The number of yarns ruptured per peak is inversely proportional to
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)

]
nrin per peak.,  This c11) reswlt in o doveyr tear Steenpgth than for Shc
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ased vpor previous research on the wochaniez of teare, Lhe Tollowing
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g »
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lead, Pog the gean Leap strength) Py ocgual ¢ ———— ; nd the enerpy, ¥,

(d:fined @5 the arvg woder the Sud-tockh Carv® bLrean =hé Lindts of D and B
in Pigure 200) required to tear across one ireh of sarple, Tables 75 and W0

list these puramctors Uor the Chency nd turvick fabrics,

The effect of {illing yarn Leist on Lear perrormmnce of the Cheney
fabrics can be seen graphically in Figure 201 which plots tear cnerpy and
average tear streneth againct {illing yern tuoict., Very little ditfference,
if any, can bz observed in the filling tear characteristics with varying
“j1lirg yarn twist. losever, the resulting cffects on varp tear properties
are juite prorounced. As has been mentioned befc e, the yarns to be torn mny
slide along the cross yarns and become bunched prior tu their rupture. At
0.9 turns per inch, the filling yarn ic piactically @ [lat ribbon without any
obstructions to deter the sliding of the warp yarns. This allows a greater
number of uarp yarns to be bunched togcther for cach peak. As the twist is
increased in the filling yarns, the configuration is changed: the helical
paths formed by the individual filaments permil "nesting” action to take place
with the counter pacts of the wvarp yarns. Thus the frecdom of warp yarn
motion is pgreatly reduced which results in a fewer number of yarns being
ruptured at cach peak, and hence & lower tear strenpgth.

Similarly, o change of from 7 to 10 turns per inch in the warp yarn
twist regults in a loss of filling tear strenpth and energy.

samples from the Varwvick series vere tested and their results uere
divided into three groups as shown in Table 0. The first group had constant
filling twist with varying warp tvist. The second group varied the filling
twist vhile the warp twist vas held constant. In the final group, both the
varp and filling tuists were varied.

The data apain show that loss of tear performance results from
increase in yarn twist., 1In each of the three groups, substantial decreascs
in tear strength and cnergy are evident when either the warp or filling yarn
twist increases beyond 5 turns per inch. Both the warp and filling properties
are changed when the yarn twist in only one directicn is varied. This pheno-
menon is different from the behavior of the Cheney fabrics wherein the warp °
tear properties are only functional with filling yarn twist. The explanation

* Quartermaster Reports: Fabric Research Laboratories, Inc. Case Number CL886L.

WADC TR 55-104 -10-




might be that the Cheney fabrics are of twill construction (Type II), whereas

the Warwlick fabrics are of rip-stop construction (Type I). The latter is a
much more stable structure, and therefore any distortion or displacement
occurring in one direction might easily cause a similar disturbance in the '

other direction.

An additional check was made by testing three groups of culendered
fabrics with virtually the same results. The calendering process did not pro-
duce any noticeable effect on the tear properties of these parachute fabrics.

I1I-2.6 Biaxial Testing

Irntroduction '

In blaxdial testing, the testing machine and methods of which are dis-
cussed more fully in Appendix (I), a material is subjected to simultaneous
stresses in two directions. For all cases considered here the two directions
will be those of the warp and filling yarns., The machine axes will be designated
ag X and Y. It is easy to see that the stress-strain curves so derived will
in general be steeper than those obtained from uniaxial or strip tensile tests
due the interaction of the warp and filling yarn systems. This results in a
sort of Polsson effect and is analogous to the well known relationships for |
homogeneous, isotropic media which follow Hook!s Law:

0= 1 (Cy- OY) - (2.6)
1
oy = 3 (G- VG —(2.7)
vhere
6y = strain in the X direction
ey = gtrain in the Y direction

Young's Modulus

=
1

Cx " stress in the X direction

C'y = gtress in the Y direction
J

|
I
Polsson'!s Ratio ’
|
Unfortunately, the biaxial problem in textile structures is neither i
I
|
\

linear nor can the principles of superposition be applied, both of which are
necessary for a direct application of the above equations. However, they will
be of value later for indicating in a qualitative way, the effect of biaxial

tensioning.

With respect to air permeability, a uniaxial test is particularly |
inadequate since the air pressure creates simultaneous tensions in warp and
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fi11ing yarn systems. The biaxdal extension of either under such conditions
will in general be less for uny given load than the corresponding uniaxial
extensions. Since one of the important factors governing air permeability
is the increase in free area under a given pressure and this is closely re-
lated to the increased dimensions under a biaxial load, the latter-type of
stress application seems the more logical here.

It is important to note that since the problem is not soluble by
means of superposition there may be an infinity of strain states with given
X and Y loads and thus it becomes necessary to specify the mode by which the
glven loads were reached. Clearly, for the case of uniform surface pressure
over a spherical section the X and Y loads must at all times be equal., This
is probably the configuration of greatest interest at the moment and thus the
tests which will be discussed were conducted at a warp to filling load ratio
of unity, so that for the symmetrically shaped samples used (7 = Gy

Qualitative Analysis of Biaxial Test

On tensioning a sample biaxially the first offect is a crimp inter-
change which occurs at essentially zero load. That is, the more highly crimp-
ed direction will 1gss crimp while the less crimped direction will contract
and become more highly crimped.

From considerations of the static equilibrium of the surface of the
fabric it can be shown that:

Py = tanQ
Py  tan G

(2.8)

where Px and Py are the loads per yarn in the X and Y direction and Ox and Oy

are the angles of the warp and filling yarns with respect to the fabric surface.
Thus for a symmetrically loaded square fabric 67 = @5 and crimp interchange

will take place until this condition results,

This and the subsequent biaxial deformation can be 1llustrated in
a qualitative way by means of an adaptation of the foregoing biaxial formmlas
(Equations 2.6 and 2.7) as follows:

o = Lx(1- J}?‘ ) (2.9)
ey = TEE}*ff(l-x(ﬂ,) (2.10)

vhere

dimensionless factor indicating the influence of
y stress on x strain

<
b

J/xy dimensionless factor indicating the influence of
x stress on y strain
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Ex = the instantaneous X modulus
Ey = the instantaneous Y modulus
K = .C;I

Gy

E  and Ey are primarily determined by the tensile propertles of the
X and Y yarns vhile the values °”yx and J)q are largely dependent on the

angle of inclination of the y and x yarns respectively. That is, a change in
tension on a yarn which is highly crimped will produce more change in its
orthogonal counterpart than will one which is fairly straight.

The previous expressions are more nearly correct if written in
incremental form as:

Sex S SC_X (1 - _‘r_I’S)

Ex K —-— (2']—1)

Y

vhich are analogous to the Levy Mises formulas for plastic deformation. These
equations state that the changes in extensions may be predicted for small
changes in stresses but do not indicate the total extensions. which are com-
plicated functions of the various non-linear components.

By writing the load-extension equations in the following manner an
interpretation can be made which indicates the approximate values of the E's and
's.

dey %—z—’s) do’ 5 + (Dex) dGy
X
¢

de. =|N&I| 4qc¢ .+ [ReF 4¢
7 ey AN x
G ¢

dCx = K as before
d
Gy

doy = Gy (m v [25) (—1-)
06 xfoy bGy/Gx K

WADC TR 55-104 -13-




1
26y K

dey = dG g 1 + [26 x) M) (_)] (2.13) !
©y 6y Y

Comparing this expression with Equation (2.11) above it can be seen

V yx = - (be'x)( de x

that

o€ xfyl 906G y/Gx

and by analogy

o) e (3]
1/:v=- 06 x! Gy __ 'at’ix 6 x (2.15)

feal ]

dey
36y

y

6x

It is clear that for ary fabric neither the numerator nor the denomina-

tarcan venish and the mmerator must always be negative., Thus the V' 15 are
always positive numbers. The upper limit of the v 's is not so easily esti-
mated because thelir vwalue near the beginning of a test is determined by the

injtlal crimp unbalance.

Whenever a large crimp unbalance exists such that Equation §2.8) is
not satisfied, one of the YRE takes on a high value such that the e corres-

ponding to the direction with the angle which is too low becomes negative. This,

however, is a transient phenomenon and occurs at loads just sufficient to perform

crimp interchange. Once an equilibrium has been established it is not likely
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that any negative extensions will occur, at least with stress ratio's near
unity. For higher values of K it is of course possible to obtain a negative
extension, For K =1, the condition for the test to be described later,

{Ex

and Q—fz
v yley d6x |6y

will be considerably greater than either of

d6y] 6 x 36x)0y

and then the v 's will be much less than one for the equilibrium portlon of
the test, probably on the order of 0.2 to 0.5.

It should be emphasized here that Ex and Ey are not the moduli of
the X and Y yarns but are partdal fabric moduli defined by E__ ( 06 x

D6y |6y
and = ;LSE:Z
Ey B At very low crimps these will approach the yarn
beycy

moduli and the V  's will of course become very small. Thus a fabric with a
very low crimp would not be expected to exhibit radically different biaxial
and uniaxial stress-strain response.

Experimental Results

A1l fabrics to be discussed here are nominally square, that is, have
nominally the same -rarp and filling count and same original yarns., On this
basis it would seem possible to compare these fabrics on the basis of yarn twist
differences from one to the other. Unfortunately, such is not the case, because
the nominal squareness of these fabrics was achieved by a process of stretching
and heat setting and the properties of the warp and filling yarns are by no means
identical. This is clear even from the uniaxial tests (Figures 65-74) vwhere it
can be seen that the warp direction is much stiffer in every case. Since this
treatment varied from fabric to fabric and was fairly important in determining
fabric properties, a good quantitative comparison on the basis of twist is not
possible. Nevertheless, the biaxial behavior can be compared with the theoretical
on the basis of the experimental uniaxial results.

From the analysis of the foregoing section it would be concluded that
the biaxdal stress-strain curves of these low crimp materiels should show initially
a lower elongation than their uniaxial counterparts and subsequently follow a
path quite similar to the latter. This is what occurs in every case as can be
seen by inspection of Figures 202-205. The very early portion of the curves
near zero load, are not accurate due to the inability of the testing machine to
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compensate quickly enough at very slight load errors, and thus the crimp
interchange portions of the test results were not consistent. The exten-
sions here can be theoretically calculated purely on the basis of fabric

geometryit,

The fact that the biaxdal test rupture lcad is always much less
than that for the uniaxial tests is due to the stress concentration in the
corners of the sample outside the uniformly strained region. The true
blaxial rupture load would be slightly lower than the uniaxial due to yarn

inclination.

With respect to effects due to yarn twist, Figures 206 and 207
show the comparisoa of filling and warp characteristics respectively for
the same series of fabrics considered in Figures 202-205, pius two calendered
fabrics, With the exception of R30N30, which is stiffer than would be ex-
pected on the basis of twist, all fabrics fall into the proper order, that
is, the fabrics comprised of more highly twisted yarns are more extensible.
As mentioned before, due to processing the relative magnitude cannot be !
considered indicative of solely twist effects. The reason for the deviation '
of R30N30 from the anticipated is not clear, but it is small anyway.

At first examination 1t might seem that the differences from uni-
axial behavior are not of sufficient magnitude to warrant a large amount of
attention, but this is not true, particularly with respect to air permeabil-
ity. To illustrate this, Table 40 has been made which shows the change
in extension of thess fabrics under symmetrical biaxial loads of five pounds
and twenty pounds per inch and the corresponding uniaxial data. At the bottom
of this table the per cent increase of area calculated from uniaxial and bi-
axlal data are compared. Since the increase in total area is closely related
to the increase in free area it is clear that the biaxial correction is not

a small one, particularly at low doads.

These figures do not lend themselves to comparison with permeometer
readings since:

e. The fabric loads in the permeometer are unknown.
b. The highly restricted boundary condition during a
permeometer test make uniform biaxdial tension impossible.

Conclusions

An analysis of the biaxial behavior of fabrics shows that experimental
work is necessary in order to obtain quantitative performance information. A
preliminary experimental program involving a few fabrics has shown that the
information to be obtained from biaxial tensile testing is of value. Considerably
more work should be done on these and other fabrics in order to investigate the
effect of other loading conditions and constructions and if possible relate
these results to the data obtained from an improved type of laboratory permeabil-

ity test.

#Painter, E. V., "™Mechanics of Elastic Performance of Textile Materiels" , Part VIII
T.R.J. Vol. XXII, No. 3, March, 1952.
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11T, MECHANICS OF AIR FLOW THWOUGH PARACHUTE FABWICS

III-1 In any woven fabric structure, therc are two scts of yarns,
the warp and filling, running orthogonal to cach other. Uith the cxception
cf a jammed fabric, there exists a rinite space between any two adjacent
yarns. Upon supcrpositioning the two scts of yerns, the t:o scts of "space-
betuween-yarns” form a scries oI rectangular openings, or pores, tirough which
air flow may take place. Although it is theceetically possible for rlov to
occur between the individual fibers within a ye:n, the existance ol yaon
twist which, in varying degrees, binds the {ibers together, inhibits tihe
flow of air. All evidence tends to indicate thut if any ai: flo.s through
the yarns, the quantity is usually negligible; thus only flow bet.cen yarns,
need by considered. B

ITI-2 In view of the foregoing, a fubric sample mey be idealiued
as a plate with e large number of orifices. Consider a plate having n holes,
cach of arca Aj; the velocity of air flowing through the holes is Vy at 1
pressure of P;. On the upstream side, the arca is A, ; the velocity, V. ; and
the pressure, P,. Thus writing Bernoulli's equation and the equation of con-

tinuity, assuming air density changes between points o eand 1 to be negligible,
gives:

and

Ao Vg = DAL V] mmmmmmmmmm oo oo (3.2)
where

v, = Velocity of upstream air, ft/sec.

V) = Velocity of air flow through holes, ft/secc.

g = Acceleration due to gravity, ft/sec.?

PO = Pressure of upstream air, lbs/ft.e

P, = Pressure of air through holes, lbs/ft.°

Density of upstream air, lbs/ft.3

0
o
i

Density of air through holes, lbs/ft.3

1]

1
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Area of upstream duct, ft.2

>
u

2
Area of each hole, ft.

g

=]
u

Number of holes over area Ao, dimensionless.

Equation (3.2) may be rewritten as:

V, = nA
1
e —(3.3

Sirce, by definition, nAj/A, = FA = Free area, or that fraction

of total fabric surface which the open pores occupy and which is available
for air flow, then

Vo = (FA) Wy (3.4)

Substituting (4.4) into Equation (...1):

2

(FA? 7% b, W B

—— b — =+ =
2 & [
22

28 ()o 6_1

Since the pressure differential, h, in feet of air, is P, _ P

o @
then Equation (3.5) becomes: :
By definition:
q = vl (FA) T (3-7)

vhere 3 ,
q = Air permeability, ft°/scc. per ft~ of sampld
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However, Equation (3.7) applies to a perfact orifice with a

discharge coefficient, K,

of unity. All othar types of orifices usually

have a discharge coefficient of less than oue; thus:

- FA
q = K /2 (3.8)
Viome V¥
Again, by definition, the free area may be written as:
FA = (1 - Du Tw) (1 - DF TF) e R (3-9)

vwhere

Horlzontal diamster of the warp yarms, inches.

Horizontal diameter of the filling yarns, inches.

Threads per inch in the warp direction.

Threads per inch in the filling direction.

In practice, the pressure differential term in Equation (3.8) should
be in inches of water rather than feet of air, thus the expression becomes,
neglecting small changes in air density over the pressure ranges involved,

Q =

vhere

4007 —

AP
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Lo __FA {“A P o (3.10)
1 - (Fa)%

Air permeability, cubic feet per minute per
square foot of fabric sample - 60 q.

Numerical constant, combination of 2g, the
ratio of densitlies between air and water and a
factor of 60 seconds per minute.

Pressure differential, inches of water.
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According to Equation (3.10), if the discharge coefficient, K, and

the frce area, FA, remain constant with pressure changes, then the flow, Q,
should be proportional to the square root of the pressure diifcrential = P.

However, this is not so. While the discharge coefficient might change, per-
haps by a cmall amount, with increasing pressurce differential, the Iree areu
definitely does increase as a result of biaxial extensions. This behavior is

very evident in Figures 12 chrough 19 wherein the siopes of the lines are all
greater than one-half. The slopes would have been equal to one-half had the
fabrics followed the squeare root relationship. The curves in these rigurcs all

are expressible in the follosing form:

Q = BOOTK ——BQ  ((AP)®  ceeeoie e (3.11)
1 - (FAo)?

where

The frece area determined while the sample is uat rest
(under zero pressure with zero biaxial extension).

=
(@]
]

=
]

o) (l - DWO T‘,-,’o) (l b DFO TFO) """"""""""""""""

The exponent of the pressure differential if it is assumed
that the free area does not change with pressure.

The numerical values of n have been calculated from the experimental
data and are given in Column 4 of Table 37 . In Column 2 of the same table ure
given the values of light penetrability, LP, which in light of the experimental
evidence is equal to the free area at rest(See Appendix IV):

L R

The magnitude of n appears to be inversely functional with LP as
seen in Figure 211. The departure from the square root relationship becomes

less as the free area gets larger.

Equation (3.11) with the exponent n greater than one-half has an
ambiguous physical meaning. To make the data fit Equation (3.10), or to con-
form with the square root relationship, the free area must t= analyzed in terms

of the pressure differential:

FA = £ (FAg, AP) mmcmmmmomm e (3.14)

More precisely, the free area changes under biaxial tension as a result
of (1) Decrease in yarn diameter from slenderizing and (2) Reduction in the
threads per inch through yarn stretching (the more complex case of fabric stretch
with no y&in stretch; i.e., crimp interchange, will be analyzed following tne
experimental determination of biaxial stress-strain effects):
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Dy D
N R S .15
Lo by °0 L+ fpép

T, = L (3.10)
L+ g 7 14 gy
nere
& éF\= Elongation in the varp and {illing dircctions
S \fp = Poisson's ratios of thetwodireciions
Then

D.. T Dy T
FA = (1 ; oy o ) 1 - fo  ,_7Fo )\ (3.17)
1+ Jlﬂl éh 1+ é F 1+ \rF é F 1 é W

In the case of a square fabric, symmetrically strained,

, 2
D i\
FA = (1 - — 2 5 —° ) ---------------------------
1+ §& 1+ €&

The elongation & is functional with AP, wherein a linear relation-
ship will be ussumed. Equation (3.18) may then be written as:

2
mo=f1. 20 N (3.19)
1+ AP 1+PAP
—— o
1- FA
or FA =1 - 0 o IR PR (3.20)
1+XAP+§AP

g Assuming that the biaxial strains are small and thus that the term
A P2 is very small compared to K‘A P and may be neglected, Equation (3.20)

becomes:

\ 2 2
1-V 1 -
g - (1 - L2 YFRo =1-——J@i _______________ (3.21)
1+yAP 1+ AP
Substituting Equation (3.21) into Equation (3.10):
(1 1 -VEP ‘)2
Q = 4OOTK L+ fAP (P oo (3.22)
il
il (il o =B
1+ ¥AP
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Amorg the rabrics listed in Tuble 24, ~ight arc nominally sguace in
construction. As a first order apprexitmtion, ascuming thet the discharge
coefficient for any fabric is a constant, it is pcssible to determine the
values of GA, for cach experimenwel velue ol aP (from the measurcd values of
air peimeubilitics end light penetrabilities), Performing the necessary c¢nlcu-
lations, on only onc fabric; ramely, R 1,2 i 1,2, ¥ .as found to be 0,011
units of strein per inch of water. The uctuwl voluesa the discharge cocf'-
ficients for all fabrics, assuming & to be a constant wmong all fabrics fur
ail velues of AP, may now be obtained (Table 38 ). Actually, & varivs consi-
derably vith AP, and somewhat with tabric cunstruction. Figu:re 212 plots
values of K computed on the basis or = 0.011 versus L? on semi-log paper.
The curve in this plot seems to contform Lo the rollowing cgquation:

K = 1.060T + 0,315 10g LP  =m-emmemmcome oo e ocaenaas (3.23)

Substituting Equation (3.23) into Equation (3.22):

1 - VLP

[ )
Q = 400T(1.0467 + 0.431% log L2) - L 00IaP)  I5F .- (3.04)

!
\/ L[y L-VIP ‘
1+ 0.0ll5a P

The calculated values of air permeabilities at pressurc differentials
of 0.5 and 10.0 inches of water of the available square ratrics ore given in
Table 39. The agreement between the calculated and the experimental data is
shown in the plot of Figure 213. It is seen that the agreements for the non-
calendered fabrics are somewhat better than the calendered ones. Despite thc
fact that Equation (3.24) was derived for square fabrics, and that only approxi-
mte values of ¥ wcre used, it checks remarkably well for fabric R 1,2 C30
which is non-square. To make Equation (3.24) generally acceptable for design
use, additional refinements will be necessary. It is anticipated that in any
future program this will be pursued more rigorously.

WADC TR 55-104 A

S




WADC TR 55-104

APPENDIX I

JEXPERTMENTAL PROCEDURES

-23-




TEST PROCEDURES

The following test procedures cover methods of testing employed
but not discussed elsevhere in the text.

1, Fabric Thickness

Thickness was measured using a dial gage equipped with & 3/8"
diemeter presser foot and a six ounce headweight (A.S.T.M. D-76-49) and

D-39-49.
2. Texture (Picks and Ends Per Inch)

Picks or ends per inch were counted in at least five different
areas of the fabric and the average reported (A.S.T.M. D-39).

3. Yarn Twist

Varp and filling yarn twist was determined on a ten inch length
of yarn vring a standard twist tester. The yarn to be tested was attached
to both jaws of the tester while still in the fabric, raveled from the
fabric, tensioned to remove loom crimp, and was then untwisted. The average
number of turns per inch of yarn was reported from ten such tests.

4. Denier

Yarn denier was determined by weighing 10 inch lengths (crimp re-
moved) of yarn to the nearest 0,01 mg. Five such measurements were made

and the denier calculated from the following equation.

3543.3 x grams/100 inches = denier (1)
Denier by definition 1s the number of grams of yarn per 9,000 meters.

5. Yarn Diameter (Measured Microscopically)

The fabrics were first imbedded in a suitable mixture of two parts
iso-butyl methacrylate polymer, 1 part xylol and 1 part toluol. The mixture
was heated at a low temperature until solution was effected and there was
no longer any sign of bubbles. It was then allowed to cool and poured onto
a glass plate. The fabric was then placed carefully on the plastic layer.

The next day a second layer of methacrylate was poured over the fabric. The
whole mass was then allowed to harden until it was impossible to meke a finger

print in the surface.

Specimens approximately 1/2" x 3/4" were cut from each sample. From
these, cross-sections 20 microns thick were cut using a sliding microtoms.
The cross-sections were mounted in mineral oil on a conventional microscope

sliae.
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Using a conventional filar micrometer, the yarn diameters were
measured. Each measurement reported is an average of 20 determinations.
In the case of rip-stop yarns, pairs were measured as a single yarn since
it was extremely difficult to define the yarn boundary.

6. Load-Flongation

Load-elongation diagrams of yarns were determined on an Instron
Tensile Tester.

Per cent elongation to rupture was calculated as follows:

¢ Elongation = 1inches of chart(n; 10ad to rupture) X 100 —_(2)

gage length x chart speed
Jaw speed

From typical ourves (average of ten tests), it is poassible to
calculate the energy to rupture. This energy is represented by the area
under the curve from no load to rupture.

0.00734)1 x Area under curve (3)
denier

Energy Per Denier =

full scale load (gms) , 1 x dav_speed -—(4)
454 x chart length gage length chart speed

0.007341 =

The areas for the above calculation are determined by a planimeter.
For all values reported the constants in (3) were the following:

full scale load 400 grams

chart length 9.6 inches

gage length 5 inches

jaw speed 2 inches per minute
chart speed 5 inches per minute
energy units gn. cm/cm/denier

7. Biaxlal Tension

General Description

There are two orthogonal sets of jaws. (See Figures 209 and 210).
Opposing jaws move with equal speed but the motion of one set is controlled
by the load experienced by the other. The independent motion will be designa-
ted as being along the X-axis; and the dependent motion along the Y-axis.
X-axis motion is controlled by a lightly loaded induction motor suitably geared
to give extension .ates of 0.05"/min. to 0.20"/min. Thus, the rate of jaw
separation in the X-direction is essentially constant, but due to the fact that
the tails of the sample are under uniaxial tension, the X-extension of the

biaxial region will not be a known function of jaw separation (or time), so
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this biaxial extension is measured and recorded directly. Similarly, the
Y extension must be found directly. Y extension is controlled by a servo
system operating such that the load in the Y direction will always bear
the same relation to the load in the X direction; that is Py =g vhere Py

Px
18 the Y load, Px is the X load and K is a constant which can be chosen at

will for a given test. Both loads and extensions are recorded on the same
chart in a broken line fashion.

Figure 208 shows all main components in block form. The contents
of the block are as follows:

Load cells X;, X5, I, and Y, are identdcal Wheatstone bridges com-

posed of four SR-4 reslstance gages each. All four are bonded to a thin
walled dural cylinder with two gages active and two providing temperature
compensation. The load cells Xl and Yl are the servo sensing elements and

are connected in series. The load cell X sensitivity control is simply a

variable resistance connected across the bridge of load cell Xj- Load cell
X, and load cell Y, are used to measure the X and Y loads respectively.

The X-extension and Y-extension gages are Schaevitz Linear Differ-
ential Transformsrs whose motion is controlled by small pins pushed through
the fabric near the center where there is no boundary effect of jaw attach-
ment and initially set at a separation of one half inch. Thus, as the fabric
extends, the pins move apart and the moving slug in the Linear Differential

Transformer 1s displaced.

Amplifiers 1 and 2 are both Sanborn Strain Gege Amplifiers. No. 1
is used as a servo-amplifier and feeds an amplidyne whose output controls the
speed and direction of the Y-axis drive motor. No. 2 is used as a source
voltage and amplifier for the measurement gages. The automatic switching
causes traces of X loads, X extensions, Y load and Y extension to be recorded

cyclically for periods of one second each.

The A.C. induction motor runs the X-axis drive, and since it is
running at only a very small fraction of full load, its speed is essentially

constant.

Operation

A cross-shaped sample¥* is loaded in the jaws as shown in Figure 209

with just enough tension applied to straighten it. The extension gages are
placed in position, and all four traces zeroed on the recorder. The X-drive

is then turned on.

#The sample has tails 2 inches in width, which provides an area two inches
square to be subjected to biaxial tension. The cross shaped sample is used
in preference over a square sample (for biaxial grab tests), because it is
difficult to ascertain the exact stress conditions within the area under

blaxial tension in a grab test.
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As the material extends in the X directlon a load is of course
built up along this direction and a signal arises in load cell Xj. This
signal is in excess of that at load cell Yl, and the difference is in a

direction to cause the servo motor to extend the sample in the ¥ direc-
tion. The motion of the Y-jaws will always be in such a direction as to
make the signal from load cell Yl equal to that from load cell Xl. If the

sensitivity (output/unit load) of load cells X, and Y, is equal, the X and

Y load will be equal, but if, for example, the X axis sensitivity were one-
half that of the Y, the Y load would be one-half of the X load. Although
any X to Y sensitivity ratio from 1 to O is possible, there is the practical
limitation that there is always a load error in the following system, and
this error increases directly as the ratio.

As previously stated, X load, X extension, Y load and Y extension
are plotted cyclically during this extension process. From these traces it
1s possible to plot load-elongation diagrams for each axds for any stress
ratio between the axes,
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TABLE 1

ROSTER OF FABRICS USED IN THIS INVESTIGATIOL

Specification MIL-C-7020 Type I* Specification MIL-C-{020 Iype 1I*:
Mot Calendered Calendered Mot Calerndered Calcndered

R1/2N1/2 Rl/2¢C1,2 ™ 1,2 L2

R 1/2 N5 R 12 Ch e 1,2 e L e

R 1/2 K10 R 1,2 ClO THY iCh

R 12 N20 R 1 2c20 TN TCY

R 1/2 N3O R 12 Cs0 il TCL4
IN20O 1C20

RSN 1/2 R5C 1/2 THZ5 1C55

RSNS R5CS

R5N10 R5CL0 108 1.2 10C 1,2

R5N20 R5C20 1082 1,2 10C2 1,2

R5N30 R5C30 105 10C5
10K 10C]

RTN 1/2 R7C 1/2 10K1% 10C1.

RTNT R7CT 10120 10C20

RTN30 R7C30 10K 35 10C 35

R2ON 1/2 R20C 1,2

R2ONS5 R20C5

R20N10 R20C10

R20N20 R20C20

R20N 30 R20C30

R30N 1/2 R30C 1/2

R30N5 R30C5

R30N10 R30C10

R30N20 R30C20

R30N30 R30C30

NOTE: Code for the notations in the above table:-
R - Rip-stop or Type I construction.
N - Not calendered.
C - Calendered.

First Number - Nominal warp twist, turns per inch.
Last Number - Nominal filling twist, turns per inch.

* All Type I fabrics (except RT Series) were woven by Warwick.

** A1l Type II fabrics and the RT Series of Type I were woven by Cheney.
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TABLE 2

Summary of Cheney Brothers!

Bxperimental Fabrics

Warp twists, t.p.i.
Filling twists, t.p.i.
Types of finish

Number of fabrics
Yardaege of each made

available to F.R.L.(approx.)

WADC TR 55-104

Specification MIL~-C-7020

Type I

Type 1

7
1/2, 7, and 30
Calendered and

not calendered
6

2 yds.

7 and 10
1/2,2-1/2,5,7,15,20 & 35
Calendered and
not calendered

28

2 yds.




TABLE

SPECIFICATIONS OF ADDITIONAL NYLON PARACHUTE FABRICS

Based on Specification MIL-C-7020

Yarns: 30 denier (10 tilament) Type 200 nylon
Weave: Modified Type I - Ripstop (See Figure 1)
Threads per inch: 120 x 120

Yarn twists:-

8. Warp: 1/2, 5, 20 and 30 t.p.i.
b. Filling: 1/2, 5, 10, 20 and 30 t.p.i.

Finish:-

a. One-half of the yardage calendered.
b. One-half of the yardage not calendered.

WADC TR 55-104 -31-




TABLE 4

SELECTION OF RIP~-STOP FABRICS TO REPRESENT THE COMPLETE
RANGE OF YARN TWIST COMBINATIONS

(Warwick)
Warp Yarn _Filling Yarn Twists
_Iwists 0.5 5 10 2 0
0-5 X - - - -
9 x X - - -
20 X - - X -
30 X x X x

The twenty fabrics (ten calendered and ten non-calendered) listed
in Table 4 may be logically classified into three series:

Series A ~ The twist in one set of yarns is being held constant
at 0.5 turns per inch while the twist in the other
set of yarns varied from 0.5 to 30 turns per inchs

R1/2N1/2 and R1/2C1/2

R5N 1/2
R20N 1/2
R30N 1/2

and R5C 1/2
and R20C 1/2
and R30C 1/2

Series B - The same as in Series A except the twist that is being
held constant is 30 turns per inch:

R30N 1/2
R30N5
R30N1L0
R30N20
R30N30

and R30C 1/2
and R30C5
and R30C10
and R30C20
and R30C30

Series C - The twists in the two sets of yarns vary simultaneously
from 0.5 to 30 turns per inch:

R1/2N1/2 end R1/2C1/2

R5N5
R20N20
R20N30
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and R5C5

and R20C20

and R30C30
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TABLE 9

—— e

THICKKESS OF TYPE 1 FABRICS
{Cheney)

Fabric Thickness

Fabric Codc I:. Inches
BTN 1,2 0.005%
BT 0.00 -
7450 0.0Uh
K7C 1,2 0.00 k4
RCT 0.00:1
R7C 30 0.0053
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TABLE ©

THICKZS5 b TYPE 11 FaBRICS

{Crone

Fabric Cudv

I
el
Y

S
THLY
e

PR

0n 12
1002 1,2
1019
1017
10081 %
100120
LON_

1,2
ce 1,2
7Cs

(C7
1Cly
7C20
TCY

10C 1,2
loce 1,2
10cs
10C7
10C1,
10C20
10C35

)

TRmRE 5

RO NoNe

O O C C O C

O o C

SO o cCcocc

o
00!

LU
OU b
RONEY
.00,8
0042
007

-’

LOCh

.OO"v_',
L0044k
L0045
.00u8
L0001
.00.5
L0002

0G5y
L0050
.00 7
.00.8
00k
. OOM'(
L0053




Fa
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TABLE 7

FABRIC TEXTURE FOR TYPE I FABKICS

(Cueney)

Ends Picks
bric Code Per Inch Per Inch
RIN 1,2 126 120
RTNT 124 119
RTN30 121 120
R7C 1,2 126 119
RTCT 124 120
R7C30 124 117
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TABLE 3

FABRIC TEXTURE FOR TYPE 1 FABRICS

(wurwick)
Texture (Threads, Inch)
Fabric number warp Filling
hl.2nl,2 120.0 1244
R1,2 09 118.¢ 122.2
212 RO 11:..0 12:.8
Ll 2 N2 120.2 125.2
h1? o 120.4 121.8
Kol 1,2 120.8 12:.8
R5LS 121.2 1242
k5510 121 .4 123.0
BOL20 120.0 121.8
FYN2C 120.6 121.8
R20K 1,2 121.4 120.0
oGk, 120.6 119.6
1.PON10 121.2 118.6
ROON2O 120.4 116.8
k20N <0 121.0 110.8
K300 1,2 121.0 119.4
B 30N5 120.6 119.0
R-0K10 120.4 116.2
R:0120 120.6 116.8
R30N30 120.C 115.8
R1l/2¢C L2 121.4 126.8
R 1/2CH 120.2 122.2
kR 1,2 Cl0 121.0 123.8
R 1,2 C20 120.0 122.8
R 1,/2 C30 120.6 124.2
R5C 1,2 120.6 125.6
R5C5 121.0 125.2
R5C10 120.6 123.4
R5C20 121.0 122.0
R5C30 120.8 122.6
R20C 1,2 121.6 122.4
R20C5 121.0 121.4
R20C10 121.0 119.4
R20C20 121.4 119.2
R20C 30 121.6 121.6
R30C 1,2 121.6 121.4
R30C5 121.2 121.2
R30C10 121.0 117.8
R30C20 121.0 118.4
R30C30 120.8 117.4
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TARLE Y
FABRIC TEXTURE FOK TYPE II FABRICS
(Cheney)
Ends Picks
Fabric Code Per Inch Per Inch
N 1,2 131 1 .
N2 1/2 128 79
THS 130 18
T 128 78
TNLS 129 78
120 126 80
IN25 126 76 [
c 1,2 130 79
C2 1,2 - 130 78
7CH 129 17
7CcT 129 7 j
7C15 128 78 '
7C20 131 80
7C35 130 78
'
JON 1/2 130 11
10N2 1,2 131 75
10NS 128 75
10N7 130 T1
10N15 124 76
10N20 125 17
10N35 124 78
10C 1/2 130 77
10C2 1/2 129 11
10C5 128 76
10CT 131 77
10C15 129 1
10C20 128 78
10C35 132 17
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TABLE 10 ,

YARN TWIST OF TYPE I FABKICS

(Cheney) |

J

|

Twist Per Inch !

Fabric Code Warp Filliag .
RTN 1,2 Regular Yarn* o 1.2
Ripstop Yarn* 7.9 1.2

RTHT Regular Yarn 7.6 8.6 |
Ripstop Yarn 1.7 8.6

KTN30  Regular Yarn 8.2 33.0 !
Ripstop Yarn 1.7 2.7
R7C 1/2 Kegular Yarn 7.5 1.0
Ripstop Yarn 7.5 1.2
RTCT Regular Yarn 7.6 8.6
Ripstop Yarn 7.6 8.8
R7C30  Regular Yarn 7.6 514
Ripstop Yarn T.h 31.k4
* 16 regular yarns followed by a ripstop yarn

(2 regular yarns woven as one); or a repeat
every 18 yarns.

WADC TR 55-104 -38-




TABLE 11
YARN TWIST FOR TYPE I FABRICS
(Varwick)
Yarn Twist (t.p.i.)
Fuabrlc Code Warp Filling
|
R1/2N 1,2 1.5 1 !
R 1/2 NS 1.t 6.8 ‘
R 1/2 N10 1.5 11.6
R 1/2 N2O 1.k 23.4 |
R 1/2 NsO 1.2 Skl
|
R5N 1/2 6.7 1.0
R5NS 6.3 7.1 |
RSN10 6.2 12.0
R5N20 6.7 22.0
R5N30 6.6 33.1
|
R20N 1,2 22. k4 1.2
R20NS 22.5 6.6 i
R20N10 22 11.7 |
R20N20 22,k 22.¢
R20N30 22.2 33.8 ;
R30N 1/2 32.1 1.5 |
R30N5 32.1 6.8 l
_R30N10 32.8 11.2
R30N20 31.4 23.k4
R30N30 32.0 3.2
R1/2C1/2 1.5 1.4
R 1/2 C5 1.k 6.2
R 1/2 C10 1.5 11.8
R 1/2 c20 1.4 23.5
R 1/2 C30 1.5 33.8
R5C 1/2 6.6 1.1
R5C5 6.1 6.7
R5C10 6.8 11.4
R5C20 7.0 23.6
R5C30 6.1 33.8
R20C 1/2 23.2 1.0
R20C5 22.5 6.6
R20C10 22.4 11.k
R20C20 22.8 23.4
R20C30 22.5 34.1
R30C 1/2 33.0 1.5
R30C5 33.1 6.7
R30C10 33.6 11.3
R30C20 33.0 23.9
R30C30 32.7 33.9
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YARN TWIST FOR TYPE II FABRICS

1ABLE 12

Fabric Code

12
e 1,2
(ip)

TN
TNLY
IN20
k2

¢ 1,2
12 1,2
TCH

T
7CL5
720
TC55

101 1,2
10N2 1/2
1015
10N7
101815
10N20
10135

10C 1/2
10c2 12
10C5
10CT
10C15
10C20
10C35
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(Cheney)

Tvist Per Inch

Werp  Filling
. 1.2
7.8 543
7.0 .2
8.0 (.8
8.0 16.8
1.1 23.2
1.7 36.3
T.'( 1.0
1.7 5.0
7.4 0.3
8.0 7.9
8.0 16.4
8.t 23.6
7.8 36.6

10.¢ 1.0

10.7 33

10.8 6.2

10.6 7.4

10.8 16.2

10.5 22.9

10.; 38.6

10.9 1.0

10.3 3.2

11.1 6.3

10.8 7.8

10.7 16.6

10.6 23.1

10.9 40.3




TaBLE 1-

YARL CENIES POl TYPE 1 FABRICS
(Cheuey)

Yari: Denicr

_ rabric code warp Filliug
BYI1, 2 Regula. Yur SO =l
Ripstop Y.rn 248 1.
LINT Regul.: Yoru sl.u 3
Ihipstop Yar:u sl o
KN30  Regular Yurn 2.0 %5
Ripstop Yarn 32.¢ 5.2
RTC 1,2 Regular Yarn 51.2 42,0
Ripstop Yarn 31.8 3.0
RTCT Regular Yorn j2.l 525
Ripstop Yarn 210 5227
R7C30  Regular Yarn 41.8 3343

Kipstop Yar: 32.0 530
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Fabric Code

R 1,2 N12
R 1/2 KS
R 1,2 N0
R 1,2 N2O
R 1/2 N30

KSK 1/2
RSNS
R5N10
R5N20
R5N30

R2ON 1/2
R2ON5
R2ON10
R20ON20
R20N30

R30N 1/2
R30N5
R30N10
R30N20
R30N30

WADC TR 55-104

YARN DENIERL FOR TYPE I FABRICS

TABLE 14

(Warwick)

Yarn Denier
Warp Filling Fabric Code
51.0 1.6 RlL2cCl>?
31.0 0.0 R12CS
30.7 2.2 R 1,2 Clo
21.0 31.9 R 12 C20
3.3 1. R 1,2 C20
50.8 &1 BSC 1,2
30.8 32.1 R5CH
30.¢ 51.8 R5C10
30.9 32.1 k5C20
25.9 32.7 R5C30
30.6 31.5 R20C 1,2
31.2 32.0 R20C5
31.1 31.5 R20C10
20.6 30.7 R20C20
30. 32.1 R20C30
30.9 31.7 R30C 1,2
31.3 32.0 R30CS
30.6 31.0 R30C10
31.2 31.7 R30C20
30.6 32.1 R30C30

Yarn Denier

Wurp Fillig
UL 302
1.4 510
1.0 32.8
30.8 2.1
1.3 32.0
20.¢ 2.0
ol 32.9
30.6 2.5
30.6 32.8
30. ¢ 32.6
30.8 32.0
3.5 2.
31.9 1.8
30 . 31.9
21.8 32.2
30.6 3.1
31.8 31.8
30.8 31.6
21.6 32.8
31.9 32.6
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TABLE 19

YARN DENIER FOR TYPE II FABRICS

(Cherey)
Yarn Denier
Fabric Code Warp Filling
N 12 42.5 7.2
™2 1,2 k2.2 75.8
NS 41.9 17.6
NT 41.9 Thob
TNLS 41.8 74.0
TN20 41.5 74.8
TN35 41l.1 17.9
10N 1/2 41.9 . b
10N2 1/2 42.2 75.1
10NS 41.8 75.8
10NT 41.8 6.9
10N15 41.8 Th. b
10N20 41.1 76.9
10N35 41.5 18.3
7 1,2 42.5 75.8
7C2 1/2 bo.2 77.2
7C5 k2.5 77.6
7cT bo.5 7.
7C15 k2.2 76.5
7C20 k2.5 76.9
7C35 yo.2 79.4
10C 1/2 4o.2 17.2
10c2 1/2 43.2 76.5
10C5 42.9 76.
10C7 k2.5 17.2
10C15 42.9 .9
10C20 k2.9 77.2
10C35 42.5 76.2
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TABLE 1€

YARN DIAMETERS FOR TYPE I FABRICS
(Che.acy)

Yaru Diameters Measured In The Fabric Usi.g A Microscope, (In Irches)

Warp Filling

Horizontal Vertical Hori-ontal Vertical
Fabric Diameter Q}ameter Dicrmeter Diameter
RN 12 L0049 ¢ .00176 LU .00086
KTNT .oohkLz L0018k .006-2 .00108
RTN50 L00hOT .0018h L00h67 L0030
R7C 1,2 L0047k .00168 .00 06 .00
RCT .005k 5 .00168 L0083 5 L0015
R7C30 .005:32 .0018k .GoL2r L00L3%
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Fabric
_Code

eries
R 172 N1l/2

R5A 1/2
RN 1/2
R30N 1/2

R1/2C1/2
R5C 1/2
R0C 1/2
R30C 1/2

Serie
R30N 1/2
R30N5
R30M10
R30N20
R30NK30

R30C 1/2
R30C5
R30C10
R30C20
R30C30

Series C

R 172 N 1/2
R5N5
R20N20

R30820

R 1/2 C 1/2
R5C5
R20C20
R30C30

TABLE 17

DI FRS O
Warwick)
Yarn Diameters (Inches)
Single Yarns top Jarns
—Herp Filling —Harp Filling
0.005003 0.007204 0,007285 0.010183
0.004815 0.007349 0.007486 0.010063
0.003370 0.007466 0.006464 0.009882
0.003110 0.005825 0.005521 0.009120
0.006205 0.007323 0.008631 0.011604
0.005499 0.007506 0.008262 0.011500
0.003945 0.007430 0.007266 0.010726
0.003810 0.007104 0.007542 0.010995
0.003110 0.005825 0.00552 0.009120
0.002979 0.005418 0.005559 0.008720
0.£03148 0.005159 0.005723 0.009252
0.003163 0.003772 0.005825 0.007870
0,003023 0.003719 0.005863 0.006560
0.003810 0.007104 0.007542 0.010995
0.003676 0.006885 0.007332 0.010814
0.003813 0.005988 0.007173 0.009645
0.004006 0.005180 0.006910 0.008823
0.003834 0.004279 0.006733 0.008350
0.005003 0.007204 0.007285 0.010183
0.004514 0.005598 0.006548 0.009468
0.003218 0.004256 0.006292 0.008430
0.003023 0.003719 0.005863 0.006560
0.006205 0.007323 0.008631 0.011604
0.005145 0.006940 0.007079 0.010598
0.004258 0.005059 0.007476 0.009136
0.003834 0.004279 0.006733 0.008350

NOTE: Values were averaged from 20 resdings.
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T4BLE 18

YARN DIAMEIEKS Fur TYPE II FABRICS
(Cheney)

Yaru Dismcters Measured In The Fabric Using A Microscope, (In Inches)

|

Warp Filling !

Horizontai Vertical Horizontal Vertical |

Fabric Diameter Diareter Diameter Diameter {
™ 1,2 LUCH0L .0C252 L0127 .00215
2 e L0041 3 .00248 L0117+ .00197
™ 00446 L0204 01106 .0021%
‘(N7 .00565 .00224 .01087 .00236
ThLY .00 0k .002L4 00850 0026k
20 L0048 .G0260 L0075 .00362
‘IN S LUyl 00272 . 00604 .00410
10N 1,2 .00L86 .00256 .01171 .00207
10N2 1,2 0042 .00208 .01190 0024k
1015 0043y .00232 .01018 .00260
1087 00938 .002L0 .01050 .00276
10N1S .00541 .00256 .008¢2 .00305
10120 .005 36 .00256 00723 .00367
10N35 .00533 .00268 .00557 .00L61
C 1/2 .00585 .00256 .01333 .00166
‘c2 1/2 .00526 .00238 L0127k .00170
7C5 .00582 .00260 .01279 .00172
(CT .005°(2 .00256 .01299 .00178
7C15 .00565 .00256 .01055 .00252
7C20 .00543 .00268 .00890 .00287
7C325 .00565 .00272 .00614 .00403
10C 1,2 .00563 .00248 .013k42 .00170
10¢2 1/2 .00535 .00216 .01339 .00209
10C5 L0048y .00256 .01253 .00213
10C7 00547 .00232 .01228 .00213
10C15 .0055¢ .00232 .00937 .00240
10C20 .00548 .00232 .00850 .00307
10C35 .00567 .00240 .00683 . .00399
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TABLE 19

EFFECTIVE HORIZONTAL YARI DIAMETERSG CF TYP: I FARLICO

(Warwick)
Effective Diamctort
Tabric Cude varp Filling :
Series A !
T 10 F L2 0.0C0%  0.006728
9T LT 0.20k572  2.006807
ReQ! 1,0 0.003230  0.0006808
RN 1,7 0.003029  0.005538 ,
)
R1/2 61?2 0.005779  0.006978
75C 12 0.00510¢  0.0C7109
RPOC 1,2 0.003814  0.006664
R30C 1,2 0.003797  0.0067h0
Series B '
RO pll 2 0.002N29  0.005538
R30NS 0.002032  0.005178
R30N10 0.003081  0.005036
RZ01i20 0.00210h  0.00380k '
R30N30 0.003000 0.003618
R3CC 1/2 0.003797  0.0067L0
R20C5 0.003670  0.006480
R30C10 0.003759  0.005723
R30C20 0.003880  0.00500L
R30C30 0.003726  0.00k252
Series C
R 172 8 1/2 0.00k696  0.006728
RSHNS 0.00k234  0.005412
R20N20 0.002199  0.00L42k43
R30N30 0.003000  0.003618
R1/2¢C1/2 0.005779  0.006978
n5C5 0.004782  0.006569
R20C20 0.004138  0.0049k5
R30C30 0.00372 0.00L252

¥ Effective diameter, inches.
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TABLE 20

FREE AREAN AND LIGHT PELETRABILITY FOR TYPE 1 FABRICS

(Chrney)

(%)
Fabric Peretrabilivy Frec Aren®
RN 1,2 g.9- c.1%
RINT 18.4 oot
RTN50 27.1 1.0
RTC 1,2 b5 PEY
RTCY 8.6k o
R7C30 15.8 10,04

X Free areas calculated trom measurements madc on
samples not imbedded in medium.

**¥ Data not available: adjacent yarns overlap each
other.
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TABLE

21

FREE AREA AXD LIGHT PENETRABILITY FOR TYPE I FABRICS

(Wurvick)
(¢ (%) (%) (%)

Free Light Free Light
Fabric Code Area* Penetrability Fabric Code Area* Penetrability
R1,2N 1,2 7.2 6.8 R1l/2¢C 1/2 3.0 3.0
R 12 NY ——-- 15,7 R 1/2 CH cooo0 7.2
k 1/2 K10 SR 1.2 R 1/2 Cl0 o 9.0
R 1,2 N2O o0 22,1 R 1/2 €20 S 13.6
R 12 K30 SR 26.3 R 1/2 €30 S 15.8
RSN 1/¢ 6.9 7.2 R5C 1,2 3.9 4.0
RSNS 16.0 1b.4 R5CS 7.5 7.5
K5N10 S 17.2 R5C10 SR 10.1
R5N20 oo 24.8 R5C20 S 15.6
REN30 SR 28.3 R5C30 S 18.7
R2ON 1/2 10.3 11.8 R20C 1/2 8.0 6.7
R2ON5 —aae 18.7 R20C5 -—-- 10.2
R20N10 S 2885 R20C10 SR 13.5
R2ONDO 31.0 30.4 R20C20 20.5 18.6
R20N30 S 34,7 R20C30 SR 20.8
R30N 1/2 21.6 15.1 R30C 1/2 9.9 7.6
R30NS 24.8 21.3 R30C5 12.0 11.7
R30N10 26.2 26.5 R30C10 17.7 15.5
230N20 34.6 33.6 R30C20 21.7 21.6
R30N30 37.1 37.0 R30C30 27.6 25.k

* Free areas were calculated on selected fabrics as listed in Table L.
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FREE AKREA AND LIGHT PENETRABILITY FOR TYPE 1I FABRICS

TABLE 22

(Cheney)
()
(%) Light
Fabric Code Frce Arca Penetrability
TN 1/2 0.9 h,2
e 1/2 2.9 L.y
NS h.0 6.9
INT 4.2 Toh
TN1S 9.9 13.2
TN20 12.3 15.8
TN35 15.0 19.8
10N 1/2 2.7 3.9
10N2 1)2 3.4 5.4
10N5 6.7 6.9
10NT 6.5 10.2
10N15 10.6 1k.7
10N20 1h.b 17.7
10N35 19.2 21.2
WADC TR 55-104 -50-




TABLE 23

AIR PERMEABILITY CHARACTERISTICS OF TYPE I, RIP-STOP FABRICS (CHENEY) TESTED
ON THE FRAZIER PERMEOMETER AT §.R.L., INC.

Static Pressure, Alr Permeability, CFM Per Sy. Ft.

Inches of Water RTN 1/2  RTNT  RTN30  RTC 1,2 R7CT  R7C30
0.5 161 352 68k 116 152 362
1.0 256 540 --- 188 2Lo 540
2.5 Lk - - 201 462 Sy
5.0 --- --- --- 307 - .-
10.0 --- --- .- .- .- -

AIR PERMEABILITY CHARACTERISTICS OF TYPE I, RIP-STOP FABRICS (CHENEY) TESTED
ON THE GEORGIA INSTITUTE HIGH PRESSURE PERMEOMETER.

Static Pressure, |

Inches of Water RTN 1/2  RTN7  RTN30  R7C 1/2  R7CT  R7C30
0.5 --- --- e --- --- - |
1.0 oo 594 1069 S S 625
2.0 SR 881 1538 - e 958
3.0 525 1107 1924 --- 565 ---
3.5 SR S oo oo S 1268
4.0 e --- 2066 o S S
5.0 702 1439 2567 349 6% 1511
6.0 coo --- 2830 SR S ooo
7.5 --- 1783 --- --- 989 1897
8.0 --- s 3318 coo S e

10.0 1057 2114 3721 542 1195 2255
11.0 s s 3943 --- - —--
12.5 - 2k32 T e --- 2557
G0 1332 2679 Soe 716 1511 2842
17.5 --- - S S coc 3128
20.0 1558 31k2 . 850 1819 3337
25.0 1799 3556 --- 976 2090 ---
30.0 1996 coo Srais 1112 235k S
35.0 2188 - oo 1219 260k ---
%0.0 23Th . - 1408 2804 —--
45.0 2531 e oo 1462 o .-
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TABLE 2b |

ATt PERMEABILITY AT VARIOUS PRESSURE DIFFERENTIALS FOR TYPE I FABRICS

USING THE FRAZIER PERMEOMETER. :
(warvick) ,
l
Pressure Differcntials,qP, Inches of Water
Fabric Code 0.5 1.0 2.4y 2.0 1.5 10.0 Others
k1212 10k 165 314 502 6h41 769 ——--
K120y 236 362 659 998 " * U
R 12 N0 312 479 831 * » * - '
K 1/2 120 517 Thé 1288 * * % -
R 12 N30 551 88 x X * * 1333(1) |
RSN 1,2 121 193 356 559 707 847 ———-
RSNS 285 435 172 1187 * * -
R5N10 356 550 957 * * * —---
RSN20 576 862 * * * * 1298(1)
RSN 30 691 1039 * * * * 1307(2)
|
R20L 1/2 221 3Ly 620 * * * ——-
R20ONS 387 595 1032 X * ¥ ———-
R20N10 536 782 1365 ¥ * x ———-
R2ON20 732 1109 * * * * 1402(2)
R20N30 88k 1320 * * s * 650(3)
R20N 1,2 304 469 623 * * * ———-
R30NS 466 701 12L2 * * * ————
R30N10 603 915 x x x * 1161(2)
R30N20 838 1257 * * * * 620(3)
R30N30 977 * * * * 720(3)  1376(%)
(Continued)

* (See end of table)

WADC TR 55-104 =52~



TAELE CONTINUED

Pressure Differcntials,aP, Inches of Wwater

Fabric Code 0.5 1.0 2.5 5.0 7.5 10.0 Others
R12C12 51 53 10V 181 2Lo 300 o (9)
R 1,2CY 103 160 113 500 05, ‘i, -

R 1,2 Cl0 151 237 422 653 8Lo ) R

R 1/2 €20 270 h03 6Ol 1050 ! x .-

R 1,2 C30 329 496 832 1260 Y g e
R5C 1/2 50 85 164 269 351 L28 —e--
R5CS 113 185 35k 5T Thiy 109 S
R5C10 177 279 50k 178 1017 ¥ -
R5C20 310 L37 826 » ¥ ’ R
R5C20 395 603 101k X G X .-
R20C 1/2 100 161 106 499 648 18y -
R20CS 166 27k 517 819 1086 X ———-
R20C10 251 345 705 1120 * * S
R20C20 403 613 1041 * X X -
R20C30 L2 718 1248 * * * ——-
R30C 1/2 112 183 353 578 746 913 S
R30CH 203 324 609 952 * * ———-
30C10 303 L2 830 * * * R
R30C20 408 730 1280 X X x> -
R30C30 597 90k » * x A 1344 (1)

¥ Data not available.

(1) Data taken at 2.0 inches of water (4) Data taken at 0.9 inches of :ater
(2) Data taken at 1.5 inches of water (5) Data taken at 12.5 inches of water
(3) Data taken at 0.3 inches of ater

All values vere uveraged from five tests. The eir permecability data ere
expressed in cubic fecet of air per minute per square foot of sample.
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TABLE 25

-----

ON THE FRAZIER PZRMEOMETER AT F.R.L., INC., CALENDERED AND UNCALENDEAED.

Static Pressure, Alr Perueability, CFM Per Sy. Ft.

Inches of Water N 1/2 ‘e L0 o INT TS "(N20 TN
0.5 105 1:0 100 201 359 b5 b

1.0 156 200 276 216 527 bLd S5

2.9 296 i3 533 561 --- --- ---

5.0 b5) 597 coo Sy oo oo S

10.0 cas S S coc S S ---
108 1/2 10K2 1,2 10NS 1ON7 10N1S  1O0MPO  1ON3Y

0.5 08 158 201 223 371 507 ohb

1.0 162 239 203 338 569 .- -

2.5 320 Lko 507 635 --- —-- .-

5.0 e coe coo o coo .- .

10.0 S coo S e cac --- -

7C 12 7C2 1/2 75 €T C15 7C20 1C35

0.5 25 30 51 62 17k 262 393

1.0 43 58 88 98 283 384 540

2.5 89 104 182 217 480 S ---

5.0 149 178 264 307 --- _ ——-

10.0 236 279 451 483 ——- —-- -
10C 1/2  10C2 1/2 10C5 10C7 10Cl5 10C20  10C35

0.5 26 33 57 75 223 278 421

1.0 48 54 9k 115 338 L5 654

2.5 9l 121 184 230 581 - .-

5.0 156 200 211 266 —— —-- ——-

10.0 252 307 ko2 == T o -
(Continued)
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TABLE 25 (CONTINUED) z

AIR PERMEABILITY CHARACTERISTICS OF TYPE II, 2/1 TWILL FABRICS (CHENEY) TESTED
ON THE GEORGIA INSTITUTE HIGH PRESSURE INSTRUMENT, CALENDERED AND UNCALENDERED.

Static Pressure,
Inches of Water TN 1/2 NS TNL5  TN35  7C 1/2 75 7C15  7C35
0.5 --- SE --- 596 --- cee ame ee-
1.0 S SR --= 900 S -em  --= 576
2.0 S --- 915 1288 --- coo oo ooo
2.5 --- .- --- --- --- --- 56 .-
3.0 --- ---= === 1586 S SR --- 1080
k.0 Soc 705 1315 --- SR . S o
5.0 416 o --- 208 S --- 797 1384
6.0 s --- 1610 --- - ceo coo oo
7.0 487 --- c.m - .-- e eee -e-
7.5 --- .- --- .- --- k1 1011 1708
8.0 S 1008 1866 2691 172 S S SRS
10.0 615 --= 2099 ~Se B Y77 1179 2008 |
12.0 --- 1257 2324 3318 250 SR com oo
13.0 == coo oo SR --- —e= ee- 2321 '
15.0 784 o= --- 3702 SR 614 1485 coo |
16.0 --- 1453 2727 3792 311 - S ¥ ;
17.0 --- ---  --= 3985 --- R
19.0 . cee e --- --- --= === 2880
20.0 930 1673 3080 @ --- 37h 737 1737 ---
22.0 - --- 3235 S ko2 mm=  —=- 3104
2L4.0 --- 1847 3393 --- --- .- e -
25.0 1058 coo oo SR Lk 854 1985  ---
26.0 .- —m a-- —-- --- .- .- 3381
28.0 --- 2026 --- SR --- cm= eme aeo
30.0 1173 “ee -e- S= Lg6 959 2197  ---
32.0 ce- 2181 --- S - mem eme aee
35.0 1286 e S oo --- 1066 2407 @ ---
36.0 --- 2335  --- ——- --- . eem ee- |
40.0 1393 2489  --- o 608 1158 2592  ---
44.0 .e- 2560 -em ae- --- T !
45.0 1496 . =25 S 662 1248  --- o= .
50.0 1581 SR S S 712 1331 a-- a--
(Continued)
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TABLE 25 (CONTINUED)

AIR PERMEABILITY CHARACTERISTICS OF TYPE II, 2/1 TWILL FABRICS (CHENEY) TESTED o
ON THE GEORGIA INSTITUTE HIGH PRESSURE INSTRUMENT, CALENDERED AND UNCALENDERED

Static Pressure,

Inches of Water 10N 1/2 10NS 10N15 1ON35  10C 1/2 10C5 10Cl5 10C35

0.5 - cu- --- 695 --- --- --- ---

1.0 S e 671 oo S --- --- 686

2.0 —e- == 969 1462 --- === 9591 9@ !
3.0 --= 0659 .- 1806 S SR SR oo

4.0 = --- 1371 2106 — - --- 1h29

5.0 -- 87; coo SR 161 359 981 S

6.0 S -—- 1699 2624 o S --- 178l

7.0 --- 1027 S S oo L30 1176 coo

8.0 563 --- 1969 3068 ~oo S --- 2081

9.0 oo SR --- 3201 = S oo o

10.0 --- 1246 2222 3h9l 253 538 1h3g 2356

12.0 703 ---  2LkB 3907 S S -—- 2617
13.0 SR S ---  ho67 SR S SH S
14.0 S --- 2668 @ --- coo SR SR S '
15.0 e T T ceo 33L 714 1777 2950 .
16.0 834 --- 2863 S S SR S --- '
18.0 N [0/ T— mee eee —-e 3055 !
20.0 958 1807 3250 - 411 822 2091 . |
21.0 --- --- --- --- --- cm= -ee 3527 [
2h.0 1@ ST S --- --- --- - .-
25.0 --- --- ——- .- 473 9kl 2371 .- !
28.0 1265 .- ——- - —- - - ——-

30.0 —-- 2262 o o 538 1066 2613 - J
32.0 1307 --- ——- .- ——- —-- .- -

35.0 —e-eem e e 592 1158 2863  --- '
36.0 b6 --- a—- - - c. - ——- ’
40.0 1537 2678 ---  .-- 658 1261 3085 @ ---

Lly.0 1613 —om e oo oo LD ’
45.0 -~ 2875 oo S 707 1358 --- =2

48.0 1726 --- .- - .- e e .
50.0 --- 3066 --- --- 757 1552 --- -
55.0 SR SR S SR BI7ACEEE S ---
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TABLE 27

TENSILE TEST DATA OF YARNS REMOVED FROM TYPE I FABRICS

(Cheney)
Warp Filling
Load, Elongation, Load, Elongation,
Fabric Code Grams Per Cent Energy* Grams Per Cent Energy*

RTN 1/2 Regular Yarn 155.2 25.5 14k 1464 33.3 146
Ripstop Yarn 159.6 27.2 182 147.9 34.3 150
RTNT Reguler Yarn 160.0 29.5 108  152.2 38.4 194
Ripstop Yarn 159.1 27.6 182 153.0 38.2 200
RTN30  Regular Yarn 162.2 32.0 204k 159.0 36.3 190
Ripstop Yarn 15k4.5 35.4 2k 161.2 37.5 162
R7C 1/2 Regular Yarn 153.8 25.7 150 150.3 39.1 190
Ripstop Yarn 152.2 25.1 136 148.3 38.0 170
R7CT  Regular Yarn 152.6 27.8 166  168.3 38.1 200
Ripstop Yarn 157.2 26.2 150  168.3 38.6 178
R7C30  Regular Yara 149.2 26.6 142 153.3 39.9 184
Ripstop Yarn 153.9 27.8 150 154.7 40.5 196

¥ Energy expressed in

WADC TR 55-104

inch-pounds/inch/denier x 10-5
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Fabric
Cude

1,2
e 1,0
THY

(v
TH1S
TN2O

(.
3

e, e
172 1,2
TCH

TcT
7C15
7C20
1625

10N 1/2
10N2 1/2
10NS
10KT
10N15
10N20
10N35

10¢ 1/2
10¢2 1/2
10C5
10CT
10C15
10C20
10C35

TENSILE TEST DATA OF YARHS REMOVED FKOM TYPE 11 FABRICO

THBLE 28

{Cheney)

Warp Filling
Lead, Elongation, Load, Eblongation,
Grams Per Cent Energy?* Grams Per Cent Energy™
1233.0 12.0 202 53kl 9.0 218
195.8 30.8 182 0.8 51.2 20k
200. 3 31.8 212 16k, 3 hyeh 254
201.0 31,3 208 ShaLk ho. 7 o2l
199.5 33.0 218 3h2.9 Lo Y 24,2
107k 52.5 198 352.2 Ll b 25k
198.k 30.1 170 3L7.8 55,0 £30
195.1 32.2 200 2G7.0 51.1 12k
108.9 32.3 196 296.0 55.0 150
197.6 31.5 196 218.h 0L 1k
194.7 31.6 210 33,9 0.0 156
195.6 31.8 18 24).3 37.1 168
193.4 31.8 176 330.2 42.8 200
196.6 33.4 198 250.5 W3 226
196.6 32.h 218 323.2 35.8 166
195.9 33.3 210 6.3 h1.2 200
204.3 31.8 21k 343.9 9.3 192
20k.3 33.7 216 599. 1 b1.1 208
205.8 30.k 192 3.9 42.2 228
20k.7 30.5 190 3h2.5 Lh.5 260
202.7 3.4 198 351.6 Lh. 3 23
201.5 33.0 200 3287 35.4 162
193.5 28.9 156 325.8 36.9 130
194.6 29.6 172 531.1 35.9 1ib
19%.5 30.1 162 340.1 35.4 156
202.6 34.2 202 356.6 39.8 186
195. 4 28.7 148 336.5 L0.3 178
196.2 30.2 172 352.5 45,4 236

* Energy expressed in inch-pounds/inch/denier x 107
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Fabric Code

RTN 1/2
RTNT
RTN30

R7C 1/2

RTCT
R7C30

WADC TR 55-104

TABLE 29

STRIP TENSILE DATA FO{ TYPE I FABRICS

(Cheney)
Warp Filling
Load Elongation Load Elongation
1bs. % lbs. %
40.6 24.0 40.1 35.2
44,0 29.7 h2.5 43.6
by, b 32.1 43.3 38.2
40.9 2k .6 42.0 43.0
43.1 29.k4 45,7 41.6
43,1 30.4 41.0 42.5
=60~
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Fabric Code

N 1/2
™e 1/2
NS

NT
TN15
™20
TN35

10N 1/2
10N2 1/2
10N5
10N7
10N15
10N20
10N35

c 1/2
1C2 1/2
TC5

CT
TC15
7C20
TC35

10C 1/2
10c2 1/2
10C5
10C7
10C15
10C20
10C35

WADC TR 55-104

TABLE 30

STRIP TENSILE DATA FOR TYPE II FABRICS

(Cheney)
Warp Filling
Load Elongation Load Elongation
1lbs. 9 1bs. %
56.8 33.5 56.6 45,7
57.2 35.3 58.2 47.3
57.9 32.7 61.5 b1.6
53.8 25.5 59.5 43.7
52. 26.h 58.1 bh.s
55.9 35.7 59.3 46.6
55.2 35.1 56.6 43.1
57.3 30.3 57.b 1.7
57.3 31.7 60.8 43.8
58.1 32.7 59.7 44,3
57.3 32.2 60.6 43.9
56.2 3357 58.8 46.5
5L, 7 33.1 57.4 46.2
59.3 3b.7 58.4 b5.3
58.1 33.4 52.9 37.4
56.0 32.4 52.5 39.7
56.6 32.5 57.5 38.0
57.4 33.8 57.8 40.3
55.3 3h.5 58.0 41.1
55.8 34,7 56.5 4.6
5k.8 33.6 55.9 k7.5
56.7 32.4 55.9 40.2
56.3 32.8 56.4 43.2
56.6 32.2 57.7 41.2
56.7 32.0 57.8 39.4
55.3 33.2 58.4 b5, 4
54,2 32.9 53.9 46.0
53.8 30.5 54.5 bh.3
61—




Fabric Code

R 1/2N1/2
RSN 1/2
R2ON 1/2
R30N 1/2

R30N 1/2
R30N5
[20N10
K20N20
R30N20

R1/2 N 1/2
RSNS

RPONPO
R30K30

WADC TR 55-104

TABLE 31

STRIP TENSILE DATA FOR TYPE I FABRICS

(Warwick)
Warp Filling
Load, Elongation Load, Elongation
1bs. % 1bs. %
39.5 22.5 30.7 0.k
h2.5 06.2 b3.3 34,5
2.7 25.3 39.8 33.h
41.6 25.0 41.7 38.4
h1.6 25.0 K1.7 38.4
42,0 20,1 Lo, 2 38.?
R (6) 29.3 36,4 31.8
L1k 28.1 %0.8 Lo, L
41.8 00.6 h0.5 Li.h
395 23.5 39.7 30. 4
42,7 27.2 h2.7 37.5
L1.9 25.6 k1.9 35.8
Li.8 28.6 40.5 h1.h
62—~
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TABLE

EFFECT OF SECONDARY CREEP ON AIR PERMEABILITY

Unstressed Repeated Stress Repeated Stress Repeated Stress
Sample Level, 15 lbs. Level, 30 lbs. Level, 45 lbs.

Fabric 10N 1/2

Secondary Creep*, warp _— 0.0061 0.0146 0.0369
Secondary Creep*, filling — 0.0191 0.0430 0.0682
Free Area, % 2.7 3.04 3.46 4439
¢ Increase in FA s 10.9 26.3 60.2
Air Permeabilitys*,

cfm/sq.f't. 98 109 124 157

Fabric 10N35

Secondary Creep#, warp -— 0.0069 0.0201 0.0349
Secondary Creep#, filling —- 0.0256 0.0464 0.0699
Free Area, ¢ 19.18 20,22 21.15 22.18
¢ Increase in FA — 5.4 10.3 15.6
Air Permeabilitys,

cfm/sq.ft. 646 681 712 747

#This is assumed to be 1/2 of the value obtained from uniaxial tests (6th cycle).
##At 0.5 inches water pressure differential.
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IABLE 30
NGUE TEAR TEST DATA FOR TYPE I FABRICS
(Warwick)
Tear Energy Ave. Tear Load Max. Tear Load
Fabric in,- n, fgbric P, lbs. Pu, 1bs,

Number ¥Warp Filling Warp  Filling Warp  Filling
R1/2N1/2 14.22 12.19 6.11 5.38 6.67 5.78
R5N 1/2 16.23 13.67 6.72 6.23 7.18 6.72
R20N 1/2 6.86 6.76 3.02 3.35 3.62 3.89
R30N 1/2 8.30 6.06 3.79 2.94 4.37 3.60
R30N 1/2 8.30 6.06 3.79 2.94 4.37 3.60
R3ION5 5.07 4.88 2.27 2.34 2.84 2.79
R30N10 5.53 5.18 2.41 2.56 2.92 3.07
R30N20 4.88 5.22 2,22 2.40 2.68 2.85
R30N30 4.83 7.03 2.20 3.30 2.1 3.78
R1/2 K1/2 14.22 12.19 6.11 5.38 6.67 5.78
R5M5 5.11 7.02 2.46 3.20 3.10 3.69
R20X20 5.16 4.97 2.22 2.32 2.77 2,72
R30N30 4.83 7.03 2.20 3.30 2.71 3.78
R1/2C1/2 10.95 12.17 4.93 5.56 5.40 6.13
R5C 1/2 18.40 16.80 7.46 6.9/ 7.9 7.71
R20C 1/2 13.59 9.08 5.53 425 6.26 4.83
R30C 1/2 6.50 4 .61 2.90 2.23 3.57 2.70
R30C 1/2 10.95 12.17 2.90 2.23 3.57 2.70
R30C5 5.26 5.36 2.4, 2.52 2.9/ 2.94
R30C10 5.60 5.17 2.55 2.45 2.93 2.87
R30C20 4.89 5.49 2.13 2.57 2.60 2.99
R30C30 4.73 4.35 2.09 2.08 2.54, 2.45
R1l/2cC1/2 10.95 12.17 4,93 5.56 5.40 6.13
R5C5 12.92 12.53 5.38 5.36 5.80 5.80
R20C20 5.12 4494 2.29 2.30 2.68 2.58
R30C30 4.73 4.35 2.09 2.08 2.54 2.45
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Fabric Code

™ 1P
e 1/7
THS
TNT
N5
IN20
35

o 1/?
1062 1/2
1015
10M7
10N15
10820
LON35

WADC TR 55-104

TONGUE TFAR TEST DATA FOR TYPE II FABRICS

TABLE 30
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